
Introduction to (big) Cohen-Macaulay modules

Anna Brosowsky

Big CMinar, January 31st, 2025

These notes mostly follow Bruns and Herzog [2] and occasionally Mel’s notes https://dept.

math.lsa.umich.edu/~hochster/615W20/615.html [4]. There are also some exercises, of exam-
ples/proofs/explanations I had to cut!

* exercise = I thought it is more useful/informative than the others.
† exercise = there are some hints in Section 6.

1 Regular sequences & depth

Definition 1.1. Let M be an R-module A regular sequence on M is a sequence of ring elements
x1, . . . , xn =: x such that both:

1. For all 1 ≤ i ≤ n, xi is a non-zerodivisor on M/⟨x1, . . . , xi−1⟩M ; and

2. ⟨x1, . . . , xn⟩M ̸= M

It is a possibly improper regular sequence if we remove the second condition.

[[Taking i = 1, this means we need x1 to be a non-zero divisor on M .]]

Other terminology you might see in the wild:

• Could call x1, . . . , xn an M -regular sequence, or just an M -sequence

• Could say M is x-regular

Example 1.2. Some examples:

• R = M = k[x1, . . . , xn] then the xi are a regular sequence

• R = k[x, y]/⟨x2, xy⟩ and M = ⟨y⟩. Then y is a regular sequence.

• R = M = k[x, y] then x, y − xy, z − xz is a regular sequence

Example 1.3. Some NON-examples:

• R = M = k[s4, s3t, st3, t4] ⊂ k[s, t], then s4, t4 is NOT a regular sequence.

• R = M = k[x, y], then y − xy, z − xz, x is NOT a regular sequence.

Fact 1.4. If (R,m) is a local ring and M is finitely generated, then any regular sequence is per-
mutable. (Also holds if R is standard graded and the elements in the sequence are all homogeneous).

See Section 5.1 for an example of a non-f.g. module where permutability fails.

Fact 1.5. Let (R,m) local and M finitely generated. Then all maximal M -regular sequences have
the same length.
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Example 1.6 (Courtesy of Olivia Strahan). Even for a noetherian local ring, if M is not f.g., it is
possible to have two maximal M -sequences of different length. Let R = k[[x, y1, y2]] and let

N = ⟨y1ui − xu2i−1, y2ui − xu2i | i ∈ N⟩ ⊂
⊕
i∈N

Rui, M =

⊕
i∈NRui

N

so that xu1 = y1u1, xu3 = y1u2, xu5 = y1u3 etc and similarly for xu2 = y2u1, xu4 = y2u2, etc.
Now x is a maximal regular sequence since it is a nzd and

M/xM ∼=
⊕

iRui
⟨xui, y1ui, y2ui⟩i∈N

∼=
⊕
i

(R/⟨x, y1, y2⟩)ui.

But y1, y2 is a longer regular sequence, since

M/y1M ∼=
⊕

iRui
⟨y1ui, xu2i−1, y2ui − xu2i⟩i∈N

and this means every element of the quotient has a representative of the form
∑

i fiui where all
of the fi ∈ k[[y2]]. [[Since ordinarily would know fi ∈ R, but also y1ui = 0, xu2i−1 = 0, and
xu2i = y2ui.]] So y2 nzd on this quotient.

Definition 1.7. Let (R,m) noetherian local and M a finitely generated R-module. The depth
of M is the length of a maximal regular sequence on M contained in m. [[Can also consider the
I-depth, written depthI M , where now we only consider M -sequences contained in I.]]

Theorem 1.8. If (R,m, k) noetherian local and M finitely generated, then

depthR M = inf{i ∈ N | ExtiR(k,M) ̸= 0}.

[[We’re taking convention that inf ∅ = +∞, so in particular depth 0 = ∞. But I’m generally going
to be a bit sloppy about the zero module.]]

Example 1.9 (From Strooker). Even for a noetherian local ring, if M is not finitely generated, it’s
possible to have depth (in the regular sequence sense) less than this “Ext-depth”. Let R = k[[x, y]]
and

M =
⊕

0̸=r∈R
r/∈R×

R/⟨r⟩.

Then every element of R is a zero-divisor, so depth = 0. However, one can check that “Ext-
depth”=1. See [7, Sec. 5.3] for more info (and p.92 for this example).

Definition 1.10. dimM = dimSuppM , taking the dimension as a topological space inside of
SpecR (so, the maximum length of a chain of irreducible subvarieties). Recall that SuppM = {p ∈
SpecR |Mp ̸= 0}

Remark 1.11. A correction from the talk: If M is finitely generated, then it is also true dimM =
dim(R/ annM), since V(annM) = Supp(M) in this case. However, if M is not f.g., these are
NOT the same and we only have that Supp(M) ⊂ V(annM) and that dim(R/ annM) ≤ dimM .
Example: If R = k[[x]] and M = H1

⟨x⟩(R) = k[[x]][x−1]/k[[x]] ∼=
⊕∞

t=1 k · x−t, then annR M = 0

and so dim(R/ annM) = dimR = 1. But every element of M is torsion, so any further localization
will kill M and thus SuppM = {⟨x⟩}, which means dimSupp(M) = 0.
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Theorem 1.12. depthR M ≤ dimM . [[Even if M not f.g., this is still true when phrased as “any
M -regular sequence has length at most dim(R/ annM)”]]

Proof sketch. x1 non-zero divisor on M =⇒ x1 not in any minimal prime of annM . Therefore
dimR M − 1 = dimR/r1 M . Now induct.

1.1 Exercises

1. * Prove that everything in Example 1.2 is a regular sequence; and prove that everything in
Example 1.3 is NOT a regular sequence.

2. * † Prove that if x1, . . . , xn is a regular sequence, then so is y1, . . . , yn where yi = xi +∑i−1
j=1 ci,jxj for any collection of ring elements ci,j .

3. Prove that if x1, . . . , xn is a regular sequence, then so is xa11 , . . . , xann for any set of positive
integers ai.

4. * † Prove that regular sequences are permutable in local rings.

5. † (Ex 1.2.20 in [2]) Let R = k[[x]][y]. Show that x, y is a maximal regular sequence. Show
that 1− xy is a maximal regular sequence. Why doesn’t this contradict Fact 1.5?

6. Using the same idea as in Remark 1.11, for every n find an example of a module M such that
dimSuppM = 0 but dim(R/ annM) = n.

2 Cohen-Macaulay rings & modules

Definition 2.1. Let (R,m) be noetherian local. A finitely generated R-module M is Cohen-
Macaulay if depthR M = dimM . A ring R is Cohen-Macaulay if it is CM as an R-module, i.e., if
depthR R = dimR.

[[By the fact in section above, we only need to check that dimM ≤ depthR M ! Or in other words,
we only need to find some regular sequence whose length is dimM .]]

Example 2.2. Some examples of CM rings:

• A polynomial ring over a field: k[x1, . . . , xd] has dim = d, and has regular sequence x1, . . . , xd

• Any regular ring

• Any zero-dimensional ring.

• Any one-dimensional reduced ring. [[only need a single nzd. Reduced =⇒ all zero-divisors
are contained in minimal primes. Since 1-dim, can find some element NOT in a minimal
prime]]

• Any two-dimensional normal ring.

Definition 2.3. A system of parameters (or s.o.p.) of local ring (R,m) is a set of d = dimR
elements x1, . . . , xd such that any of TFAE hold:

•
√
⟨x1, . . . , xd⟩ = m.

• The ideal ⟨x1, . . . , xd⟩ is m-primary.

• The ring R/⟨x1, . . . , xd⟩ has Krull dimension = 0.
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These always exist! Choose x1 not in any minimal prime, then x2 a lift of something not in any
minimal prime of R/x1, etc. Dimension drops by 1 each time, so result has d elements whose
quotient is Krull dimension zero.

[[We see an intuitive connection here for f.g. M : To build a regular sequence, we’re choosing
something not in any associated prime of the quotient. So if a reg seq has length d, it automatically
is an s.o.p.]]

Theorem 2.4. Let (R,m) be noetherian local. Let M be a finitely generated R-module. Then
TFAE:

1. depthM = dimR, i.e., M is CM and has dimM = dimR.

2. Some s.o.p. of R is a regular sequence on M .

3. Every s.o.p. of R is a regular sequence on M .

Call such an M maximal CM or small CM.

Notice: any ring is in fact maximal CM! So for rings, always equivalent to think about some/every
s.o.p.

[[Contradictory sounding names? The maximal is referring to the fact that the Krull dimension is
biggest possible for this ring. The small is opposed to...]]

Definition 2.5. Let (R,m) be noetherian local, and let M be any R-module. M is big Cohen-
Macaulay if some s.o.p. of R is a regular sequence on M . Say M is balanced big CM if EVERY
s.o.p. is M -regular.

Example 2.6. Some examples of maximal CM modules:

• Any ring that is CM is automatically maximal.

• R = k[x, y]/⟨x2, xy⟩ and M = ⟨y⟩

Example 2.7. Some NON-examples:

• R = M = k[x, y]/⟨x2, xy⟩. [[in particular, this is a ring which is not CM over itself, but we
see from the above that there nonetheless exists a maximal CM module for it]]

• R = M = k[s4, s3t, st3, t4].

What about non-local rings?

Definition 2.8. If R is noetherian and M is finitely generated, then say M is CM if Mp is CM as
an Rp for every prime ideal p of R (or equivalently, for every maximal ideal).

[[There is something to check here! It’s not obvious that its equivalent to only check maximal
ideals. But this equivalence is what makes this a “good” definition, because it ensures that if R is
local, Definition 2.1 and Definition 2.8 agree.]]

Theorem 2.9. Let R be a finitely generated N-graded K-algebra with R0 = K. Then R is CM if
and only if some homogeneous s.o.p. is a regular sequence.

Proof. In [4], use the proposition on page 113, and combine with the theorem on page 9 in order
to see that the Fi’s that appeared actually come from a homogeneous s.o.p. in particular.
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2.1 Exercises

1. † Prove that two dimensional local normal rings are CM. (Recall that a local ring is normal
if it is a domain which is integrally closed in its field of fractions.)

2. * † Prove that all the definitions of an s.o.p. in Definition 2.3 are equivalent.

3. * † Confirm the examples/nonexamples from Example 2.6 and Example 2.7.

3 Čech complex

Consider a sequence x1, . . . , xn of ring elements we can build the Čech complex via

Č•(x;R) = 0 R
⊕n

i=1Rxi

⊕
i ̸=j Rxixj · · · Rx1···xn 0

d0 d1 d2 dn−1

where the restriction of di to Rxj1
···xji

is the localization (with some alternating negative signs).

Example 3.1. The Čech complex on two elements x, y is

0 R Rx ⊕Ry Rxy 0

1 (1, 1)

(1, 0) −1

(0, 1) 1

For a module M ,let Č•(x;M) := Č•(x;R)⊗R M .

Definition 3.2. Let I = ⟨x1, . . . , xn⟩ and M an R-module. Then the i-th local cohomology is

H i
I(M) = H i(Č(x;M)).

Fact 3.3. This is independent of the choice of generators for I. In fact, if
√
I =

√
J , then

H i
I(M) = H i

J(M) for all i and M .

Theorem 3.4 ([6, Thm. 10.36]). Let (R,m) be a local ring, and let M be an f.g. R-module. Then
M is Cohen-Macaulay if and only if H i

m(M) = 0 for all i ̸= dimM .

In fact, as it turns out we have the following:

Theorem 3.5 ([6, Thm. 9.1]). If R noetherian, a an ideal, K• is the Koszul complex on a finite
generating set for a, and M an R-module, then

inf{n |ExtnR(R/a,M) ̸= 0} = inf{n |Hn
a (M) ̸= 0} = inf{n |Hn(homR(K

•,M) ̸= 0}.

So when M is finitely generated, all of these equal the a-depth of M (where the regular sequence is
forced to be contained in a).
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4 Miracle Flatness

Theorem 4.1 ([6, Thm. 10.13]). Let K be a field, R be an N-graded ring f.g. over R0 = K. Let
x1, . . . , xd be a homogeneous s.o.p. Then R is CM if and only if R is free over K[x1, . . . , xd]

Or, a local version:

Theorem 4.2. Let (R,m) be noetherian local, and let (S, n) be a regular local ring inside R such
that S → R is module finite. Then R is CM if and only if it is free over S.

The connection: Notice that in the first statement, by design the ring K[x1, . . . , xd] is regular, and
R is a module finite extension of it.

[[Why the name? For “flatness”: Remember for f.g. modules over noetherian local rings, flat and
free are the same! For “miracle”: its straightforward to show that if R is free over such an S, then
R is CM. The miracle is that the other direction also works.]]

5 Big CM modules

Not all is bad!

Theorem 5.1 ([5, Thm. A]). Let R be a local CM ring with a dualizing module (such as a com-
plete local CM ring). Every balanced big CM module M “comes from” small CM modules. More
specifically, M is a direct limit of small CM modules.

We can also use the local cohomology idea from above.

Definition 5.2. Let S be a noetherian ring (of finite Krull dimension) and M be an S-module.
Then M is cohomologically CM if H i

p(Mp) = 0 for all primes p and for all i < ht p.

Theorem 5.3 ([1, Cor. 2.8], From cohomological CMness to regular sequences). If S is a catenary
and equidimensional noetherian local ring and M is an S-module which is cohomologically CM, then
every system of parameters on S is a regular sequence on M , i.e., M is a balanced big CM module.

5.1 An extended example

Example is from Griffith, see [3, Rmk. 3.3] and [5]. Let R = k[[x, y]], so dimR = 2. Let N = R⟨y⟩
and M = R ⊕ (Ny/N). [[So Ny/N = E(R/y) is the injective hull.]] We’ll show M is big CM but
not balanced. [[All of the interesting stuff happens in the second component; the 1st piece is just
to make sure nothing is improper.]]

Take s.o.p. of x, y. We see multiplication ·x : Ny/N → Ny/N is an isomorphism, because x /∈ ⟨y⟩
and so acts as a unit on N . Clearly nzd on 1st component. Now M/xM ∼= R/xR, and again y nzd
on 1st (only) component. Therefore we’re big CM.

Now take s.o.p. of y, x. [[remember permutability was only for f.g. modules!]] We claim this is
not regular, because y is a zero-divisor. Elements of Ny are of the form n

yt for t ∈ N, n ∈ N . But
y · n

y ∈ N and so y annihilates a lot of things. Therefore we’re not balanced.

(Not) Cohomological CM: One can check that just taking local cohomology at m “works”
(i.e., appears to get zero in all the right places) but the problem is that we need to check for all
primes. This doesn’t localize! So this example explains the need for the “∀p” in the definition of
cohomologically CM.
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6 Hints to selected exercises

Hints to 1.1

For #2: Think about the quotient rings.

For #4: Hint 1: show we can reduce to the case of checking that we can swap the elements of a
length two regular sequence. (Hint 1.5: transpositions?)

Hint 2: Apply NAK. (This also tells you more precisely the right hypotheses for the graded version
of this statement— R is N-graded with R0 a field, M is Z-graded with Mi = 0 for all i ≪ 0, the
elements in R are homogeneous of positive degree).

For #5: For showing 1− xy is maximal, show the quotient ring R/⟨1− xy⟩ ∼= k[[x]][x−1] and think
about prime ideals in a localization (or: think about the units).

Hints to 2.1

For #1: It’s a domain so the first non-zerodivisor (call it x) is easy. Go by contradiction for the
2nd—if you can’t get a 2nd, show that this means ∃r ̸= 0 ∈ R s.t. m · r = 0 ∈ R/⟨x⟩. Then show
that r/x is integral over R and use this to get contradiction.

For #2: For 1st to 2nd, think about the minimal primary decomposition.

For #3: Use the examples for the 1st section. And for the affine semigroup ring, focus on showing
the s.o.p. s4, t4 is not regular. Use the fact that s2t2 is NOT in the ring.
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